Examples¶
Check available classes¶
import marl
# Check available agents
print("\n| Agents\t\t", list(marl.agent.available()))
# Check available agents
print("\n| Policies\t\t", list(marl.policy.available()))
# Check available agents
print("\n| Models\t\t", list(marl.model.available()))
# Check available exploration process
print("\n| Expl. Processes\t", list(marl.exploration.available()))
# Check available experience memory
print("\n| Experience Memory\t", list(marl.experience.available()))
Single-agent example¶
Example for training a single agent with DQN algorithm.
import marl
from marl.agent import DQNAgent
from marl.model.nn import MlpNet
import gym
env = gym.make("LunarLander-v2")
obs_s = env.observation_space
act_s = env.action_space
mlp_model = MlpNet(8,4, hidden_size=[64, 32])
dqn_agent = DQNAgent(mlp_model, obs_s, act_s, experience="ReplayMemory-5000", exploration="EpsGreedy", lr=0.001, name="DQN-LunarLander")
# Train the agent for 100 000 timesteps
dqn_agent.learn(env, nb_timesteps=100000)
# Test the agent for 10 episodes
dqn_agent.test(env, nb_episodes=10)
Multi-agent example¶
Example for training a system composed of several agents with minimax-Q algorithm.
Warning
Most of the multi-agent algorithms requires external knowledge. It is necessary to specify to each of these agents their multi-agent system (MAS) by using ag.set_mas
function.
import marl
from marl import MARL
from marl.agent import MinimaxQAgent
from marl.exploration import EpsGreedy
from soccer import DiscreteSoccerEnv
# Environment available here "https://github.com/blavad/soccer"
env = DiscreteSoccerEnv(nb_pl_team1=1, nb_pl_team2=1)
obs_s = env.observation_space
act_s = env.action_space
# Custom exploration process
expl = EpsGreedy(eps_deb=1.,eps_fin=.3)
# Create two minimax-Q agents
q_agent1 = MinimaxQAgent(obs_s, act_s, act_s, exploration=expl, gamma=0.9, lr=0.001, name="SoccerJ1")
q_agent2 = MinimaxQAgent(obs_s, act_s, act_s, exploration=expl, gamma=0.9, lr=0.001, name="SoccerJ2")
# Create the trainable multi-agent system
mas = MARL(agents_list=[q_agent1, q_agent2])
# Assign MAS to each agent
q_agent1.set_mas(mas)
q_agent2.set_mas(mas)
# Train the agent for 100 000 timesteps
mas.learn(env, nb_timesteps=100000)
# Test the agents for 10 episodes
mas.test(env, nb_episodes=10, time_laps=0.5)
Training two independant DQN agents¶
The environment HanabiMarlEnv
is coming soon.
import marl
from marl.agent import DQNAgent
from hanabi_coop.env import HanabiMarlEnv # coming soon
config_hanabi = { "players": 2,
"random_start_player": True,
"hand_size": 4,
"max_life_tokens": 3,
"max_information_tokens": 8,
"vectorized":[True,True]
}
env = HanabiMarlEnv(config=config_hanabi)
obs_s = env.observation_space
act_s = env.action_space
ag1 = DQNAgent("MlpNet", obs_s, act_s, name="Bob")
ag2 = DQNAgent("MlpNet", obs_s, act_s, name="Jack")
mas = marl.MARL([ag1,ag2])
mas.learn(env, nb_timesteps=100000)