
Internship report
Generative Adversarial Networks

Student : David Albert

Supervisor : M. Jianguo Zhang

Tutor : M. Arnaud Knippel

1

Contents

Acknowledgments & Presentation 3

I Acquisition of knowlege and putting into practice 6

1 Machine Learning Overview . 6

2 Image classification . 7

2.1 Convolutional Neural Networks . 7

2.2 Small project : Yu-Gi-Oh card recognition 10

3 Generative Adversarial Network . 11

3.1 Generative Models . 11

3.2 GAN . 12

3.3 Derivatives and applications . 14

3.4 Small project : Understand and apply DCGAN network 16

4 Tools for machine learning . 17

4.1 Graphics processing unit . 17

4.2 TensorFlow library . 17

4.3 Additional machine learning methods 18

II Detecting and counting people on an picture 20

1 2018 Baidu Star Developer Competition . 20

1.1 Data Description . 20

2 General model . 22

2.1 Choice of the model and explanation 22

2.2 Architecture . 22

2.3 Loss function . 23

3 Preprocessing data and visualisation . 24

4 Learning and results . 24

4.1 Training . 24

4.2 Improvements . 25

Technician Internship

2

III Realistic image generation of cars from drawings 26

1 Project Description . 26

1.1 Data Description and preprocessing . 27

2 Model . 28

2.1 Generator . 28

2.2 Discriminator . 28

2.3 Loss functions . 29

3 Learning and results . 29

3.1 Training . 29

3.2 Testing . 30

3.3 Improvements . 31

Conclusion 32

Internship Progress 33

References, Codes & Extensions 34

Technician Internship

3

Acknowledgments

First of all, I would like to thank my internship supervisor Mr Jianguo ZHANG for accept-
ing me as a trainee and giving me the opportunity to work in the field of machine learning
area. I would like to thank him for showing me and letting me discover machine learning
applications for computer vision. Now, I have a global vision of this topic.

Otherwise, I would like to thank Mr Mahamadou Niakaté, computing specialist, for the time
he spent in order tp allow me to work in the best conditions. Thanks for altering setups of
my university account when it was necessary.

I especially thank my co-worker Mr George Chen for advices and references he gave me to
learn by myself.

Eventually, I would like to thank all my colleagues for their kindness and the administration
members for their hospitality.

Technician Internship

4

Summary

Technician internship is a 12 weeks long training period that every third year student in
mathematics department has to carry out. This internship allows students to put forward
their skills in mathematics and computer sciences. Moreover, it allows to get new knowl-
edges. I carried out my internship in an academic laboratory in computer vision and image
processing. In this lab, searchers study machine learning techniques for computer vision.
Most of them work on recognition of images for medicine anomaly.

Concerning my topic, I had to work on generative adversariel networks which is a new
topic that my supervisor wanted to study. He intended me to study a particular application,
called image to image translation.

I spent the first part of my internship listening machine learning courses, reading papers,
and make some small applications in order to get necessary skills for futur projects. During
this period, I learned machine learning’s theoritical concepts from simple artificial neuron
to deep artificial neural network. In the same way, I studied programming concepts, mainly
tensorflow library, or technical concepts as parameters choice and tricks for train a neural
network. As it was an important topic for computer vision and thus for my internship, I
tried to make a small project about it. During my internship I was mainly focused on convo-
lutional neural network and generative adversarial network. The first part of my internship
report explains both.

The second part of my internship consisted of making two projects. Firstly, I worked on
implementing a method to estimate human flow density on a picture. Then, in accordance
to "Image-to-Image Translation with Conditional Adversarial Networks" paper [2], I applied a
pix2pix architecture to transform car drawings into realistic car image. They are both ex-
plained in the second and third part of this report.

Technician Internship

5

University Presentation

I carried out my technician internship at the Univeristy of Dundee, in Scotland. I intended
discover AI research area. Therefore, find this intership about machine learning at the Uni-
versity of Dundee was a wonderful opportunity for me to acquire new skills in recent search
area. Moreover, it was the opportunity to improve my english.

Figure 1 – Queen Mother Building

The university of Dundee was built in 1881 and is now hosting more than 17 000 students,
including 25% of foreign students. The university is ranked as one of the world’s top 200 uni-
versities according to Times Higher Education’s World University Rankings and one of the
world’s top 100 universities for life sciences departement. In fact, life science and medicine
research is very advanced. Otherwise, the university has an excellent sport facility, a huge
library and some other student life facilities.

The place where I worked was the Queen Mother Building (fig. 1).The building is dedicated
to computing science. The building architecture reflects both creativity and technicalities
that require computer programming. I worked in an open-space area with PhD students
and searchers. All of them were working on machine learning for computer vision. Besides,
some of them were also beginners in this field.

Technician Internship

6

Part I

Acquisition of knowlege and putting into
practice

1 Machine Learning Overview

Machine learning is a huge topic. Way to use machine learning is multiple. That is why I
will not explain machine learning from scratch but only what we need to know about this
topic.

In machine learning problems, we consider n data {Xi}i=1..n and their associated results (or
labels) {Yi}i=1..n. Having a new data X’, we want to predict the adequate and unknown
result Y’. Let’s call (X, Y) = {(Xi, Yi)}i=1,n, the learning set. The purpose is to estimate a
non-trivial function f which provides the relationship between data and predictions.

Let’s call f the function to be estimate, f : E → F .

Given n examples (X, Y) = {(Xi, Yi)}i=1..n ∈ E×F and a model fθ, we want to find θ, vector
of parameters, which allows to minimise a cost function L. In other words, we try to find θ
such as θ = minθ (L(θ)), where :

L(θ) = L(θ0, θ1, .., θp)
= ||fθ(X)− Y ||22 =

∑n
i=0 |fθ(Xi)− Yi|2 ⇔ L2 loss

= ||fθ(X)− Y ||1 =
∑n

i=0 |fθ(Xi)− Yi| ⇔ L1 loss
= −

[
1
m

∑p
i=1 y

(i)log(fθ(x
(i)))) + (1− y(i))log(1− fθ(x(i)))

]
⇔ log loss

= ...

To solve this problem, we can compute an iterative algorithm like gradient descent (1).

Algorithm 1 Gradient Descent algorithm

1: procedure GRADIENT_ DESCENT(x, y, ε, α) . α the learning rate
2: while L(θ) > ε do . We have the answer if L is lower that ε
3: for j ← 0 to p do
4: θj ← θj − α ∂

∂θj
L(θ0, ..., θp)

5: return θ

NB : For each input, machine learning problem often consists in predicting a discret value
(classification problem) or a continuous value (regression problem).

Technician Internship

7

Examples of learning functions

• Image Recognition : X pixels of images and Y the object’s name (1 : dog, 2 : table, etc)

• Gender of anyone : X features (height, weight, etc), Y = { Man, Woman }

• House cost : X (existence, surface area, location, etc), Y = cost

2 Image classification

The aim of image classification problems is to classify images into several groups corre-
sponding to what they represent. For this task, we will see that the most powerful type of
neural network are Convolutional neural networks.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNN) are a family of neural networks built for image clas-
sification. This type of network is famous since AlexNet network (a CNN) won the ILSVR
competition vision with a very high score. Afterwards, CNNs had a huge success. The idea
of CNN is that it compares parts of input images one by one and extracts important fea-
tures. Indeed it is easier to detect similarities in smaller image areas than in the full images.
A CNN consists of multiple layers which can be divided into 2 units. The first unit works
as a "feature extractor". For that, the network uses convolution filtering operations with dif-
ferant kernels. Concerning the second unit, it is a basic connected network for classification
task.

Figure I.1 – CNN architecture

Layers Description

It is usual to speak about Deep Learning when using CNNs because they have a lot of layers.
Let me briefly describe each of them.

Convolutional layers

Convolutional layers have an image as input and calculate its convolution for each filter.
These layers allow to find image features thank to the convolutional method shown in fig.

Technician Internship

8

I.2. Features are learned during the learning step by gradient backpropagation.

Figure I.2 – Convolutional Layer

ReLU layers

Rectified Linear Units (ReLU) layers apply f(x) = max(0, x) for every value of the input
matrix. They keep CNN in accordance with the maths model by replacing negative values
by zero. There are other activation functions which can be used instead of ReLU. However,
for CNNs, it is a reasonable choice to use ReLU.

Other activation functions : sigmoid⇔ 1
1+exp−x | tanh⇔ tanh(x) |Leaky_ReLU ⇔ max(0.01x, x)

Pooling layers

Pooling layers are very important. They allow to reduce the number of pixels. Thus, they
improve the effectiveness of the algorithm which has less parameters to learn. Moreover,
they drop overfitting probability and make position and orientation of the features less im-
portant for prediction.

Max pooling (fig. I.3): Usually, we use maxpooling to reduce image size. It means that we
keep the pixel with the biggest value.

Figure I.3 – Max Pooling layer

Fully-connected layer
These layers are last in CNN. Fully-connected layers, in opposition to previous layers, are
not specific for CNNs. They get a vector as input and provide another vector of likelihoods.
Each unit of the output vector corresponds to the likelihood that the input data x is from the
ith class.

Technician Internship

9

Build a CNN

There are several question to wonder to build a CNN. How many features (and how many
pixels each) for convolutional layers ? What is the length of pooling window ? How many
layers for each kind ?

Hyper-parameters of Convolutional layers

We consider some parameters K, F, S and Z :

K - Number of filters (= features)

F - Size of filters

S - Gap of filters’ window

P - Zero-padding = number of pixels added all around of the image

NB : Zero-padding avoid to quick lose picture information

For each image of dimension W ∗ H ∗ D, outputs of convolutional layer are of dimension
Wc ∗Hc ∗Dc where :

Wc =
W − F + 2P

S
+ 1

Hc =
H − F + 2P

S
+ 1

Dc = K

Thus, if P = F−1
2

and S = 1, the output have the same width and height than the input. In
practice, we often build such architectures. Moreover, it is usual to take F = 3, P = 1 and
S = 1 or F = 5, P = 2 and S = 1.

Hyper-parameters of Pooling layers

F - Size of pooling filter

S - Gap of filter window

For each image of dimensionW ∗H ∗D, outputs of pooling layer areWp ∗Hp ∗Dp dimension,
where :

Wp =
W − F
S

+ 1

Hp =
H − F
S

+ 1

DP = D

. Usually, we choose F ∈ {2, 3} et S = 2.

Technician Internship

10

2.2 Small project : Yu-Gi-Oh card recognition

In order to apply what I learned about CNN and TensorFlow, I started by implementing
a small Deep Learning API, Code 2 & 3 p.35. The goal of this API is to provide a way to
solve usual machine learning problems easier in reusing some already implemented classes.
This project was a good start for me to improve my python and TensorFlow knowledge.
Afterwards, I used the Classifier1D class with a VGG network to train a Yu-Gi-Oh card
classifier. That is to say, a network which is able to determine if an image is a such card or
not. Why did I train a Yu-Gi-Oh card classifier ? Because I had downloaded some of them
in another small project (see DCGAN project, p.16).

Results

As I thought, for a simple task like that, VGG network provide a very high accuracy. On the
test dataset componed by 77 items, VGGnet makes a good classification for 76 of them. So
that the accuracy is 98.7%.

Figure I.4 – Classifier 1D

Technician Internship

11

3 Generative Adversarial Network

The main topic of my internship was related to Generative Adversarial Network (GAN).
GANs were introduced by Ian Goodfellow in 2014. This is a very interesting new concept of
artificial intelligence algorithm which is used in different image processing problems. GANs
are usually used new images generation. Let now see the theoritical aspect of generative
models and more especially GAN.

3.1 Generative Models

In generative models, given learning data, we want to generate new samples from the same
and unknown distribution.

We consider x1, x2, ..., xn, n samples of the same random variable X, X ∼ Pdata(x). Pdata(x)
is an unknown distribution. xi is the ith learning data. And we consider G, another random
variable, such as G ∼ Pmodel(x). Each generated sample is a sample of G. We want to have
Pmodel(x) as close as possible to Pdata(x).

Examples of data :

Data Discrete representation Tensor’s Dimension
Numerical value R 0-Tensor
Sound / Function Rfreq 1-Tensor

Music Rfreq ×Rtime 2-Tensor
2D Image Rwidth ×Rheight ×Rcolor 3-Tensor
3D Image Rwidth ×Rheight ×Rdepth ×Rcolor 4-Tensor
2D Movie Rwidth ×Rheight ×Rcolor ×Rtime 4-Tensor

Explanations : We consider samples from a random variable X. X follows Pdata(x) which is
unknown. All of the samples seem to take randomly numerical values between 0 and 1. It
makes sense to think that these values are distributed according to the Uniform distribution
in [0,1]. The main purpose of generative models is to build a likelihood density Pmodel(x)
close to Pdata(x). In practice, Pdata(x) will be complex. Thanks to generative models, we are
now able to generate new samples from X.

Figure I.5 – Generative models Overview

Technician Internship

12

We can use generative model to :

1) define and solve explicitly Pdata(x)

2) learn a model to produce samples from Pmodel(x) without explicit density

Let’s now speak about one type of generative model, its derivatives, and its applications.

3.2 GAN

Generative Adversarial Networks are a family of generative models (fig. I.5). They can be
defined as implicit. In fact, GANs enable to generate random samples from an unknown
distribution without define explictly an approximation of this distribution. Concretely, for
this kind of model, the algorithm learns a transformation from a simple distribution sample
(e.g random noise or uniform) to a more complex distribution sample. Neural networks are
a powerful method to learn an unknown and non linear function. That’s why we will use
artificial neural networks to represent this complex transformation.

GANs training

We can say that GANs are amazing because of their particular neural networks training.
This model is compouned of two neural networks which will be trained together. The first
network, called generator, allows to generate samples from Pmodel(x). Its aim is to generate
samples the closest possible of Pdata(x). As for the second network, called discriminator, it
allows to distinguish samples from Pdata(x) and samples from Pmodel(x).

Training period will look like a 2-players zero-sum game where generator and discriminator
networks are players and both try to maximize its reward by minimizing opposite reward.

Goal for each "Player":

• Player 1 = Discriminator network : Try to distinguish real and fake samples (images)
from the generator.

• Player 2 = Generator network : Try to fool the first player by generating samples
similar to data (real-looking images).

Figure I.6 – GAN training

The decision rule for this game is the minmax rule, which can be rewrite as follow :

min
θg

max
θd

[
Ex∼Pdata

log(Dθd(x)) + Ez∼Pz log(1−Dθd(Gθg(z))
]

Technician Internship

13

• Dθd(y) : discriminator output for y. It is the likelihood that y is real.

• x : real data (from the training data set)

• z : generator input (usually a random vector from Uniform or Gaussian distribution)

• Gθg(z) : generated data (fake data)

In other words, D wants to maximise objective such as D(x) is close to 1 (real data prediction)
and D(G(z)) is close to 0 (fake data prediction). In an other hand, G wants to maximise
objective such as D(G(z)) is close to 1 (D is fooled into thinking generated G(z) is real).

NB : The drawback of this model is that it trains two networks in the same time and thus it
can be unstable.

To train a GAN model we alternate between :

1) Gradient ascent on discriminator to maximise :

C1(θd) = Ex∼Pdata
log(Dθd(x)) + Ez∼Pz log(1−Dθd(Gθg(z))

2) Gradient ascent on generator to maximise :

C2(θg) = Ez∼Pz log(Dθd(Gθg(z))

Algorithm 2 Training GAN

1: procedure TRAIN-GAN(number_epochs, steps, ε, α)
2: for number of epochs do
3: for k steps do
4: •Sample batch of m noise sample {z(1), z(2), ..., z(m)} from pz, the latent space.
5: •Sample batch of m real data {x(1), x(2), ..., x(m)} from pdata.
6: •Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
[logD(xi) + log(1−D(G(zi))]

end for
7: •Sample batch of m noise sample {z(1), z(2), ..., z(m)} from pz, the latent space.
8: •Update the generator by ascending its stochastic gradient:

∇θg

1

m

m∑
log(D(G(zi))]

end for

Technician Internship

14

3.3 Derivatives and applications

Since Ian Goodfellow introduced GAN, mutiple models based on GAN have been devel-
opped and the applications of GANs have been multiplied. I will introduce some of them in
this section.

Deep Convolutional GAN

Deep Convolutional GANs are an improvement and a specific case of GANs where genera-
tor is a network producing images thanks to convolutional layers which increase the number
of pixels. In the other side discriminator is a convolutional neural network.

Conditional GAN

Conditional GANs (cGAN) try to learn data associations. That is to say that given a condi-
tion c,G learn to generate data y in accordance with this condition andD have to distinguish
real and fake paires "condition/data". We rephrase the problem by saying that c is a param-
eter for both generator and discriminator :

min
θg

max
θd

[
Ex,c∼Pdata(x,c)log(Dθd(x, c)) + Ez∼Pz ,c∼Pdata(c)log(1−Dθd(Gθg(z, c), c)

]
→ Couple examples : text/image ; black and white image/color image; summer photo/winter photo

Figure I.7 – Number to hand-written digit

Pix2pix

Pix2pix is the application of cGAN for image-to-image translation. See Part III, p.26.

Stack GAN

Stack GAN is a kind of conditional GAN which generate photo-realistic images conditioned
on text descriptions.

Technician Internship

15

Figure I.8 – Text to image

Cycle GAN

Cycle GANs is an approach learning to translate an image from a source domain X to a
target domain Y in the absence of paired examples.

Figure I.9 – Zebra to Horse translation

Figure I.10 – Other translations

Technician Internship

16

3.4 Small project : Understand and apply DCGAN network

I first studied a DCGAN code [7] from carpedm, understood how it works and applied it on
my own images. I chose to generate Yu-Gi-Oh cards because Yu-Gi-Oh cards have similari-
ties and so I thought that it could give good results for GAN. Moreover, Yu-Gi-Oh cards can
be easily found on the internet [10]. Thus, I wrote a bash code to download more than 3000
Yu-Gi-Oh cards and I used them as input of DCGAN algorithm.

Figure I.11 – Real Yu-Gi-Oh cards

Figure I.12 – Training progress

Other random generated examples are available p.36.

Technician Internship

17

4 Tools for machine learning

Machine learning techniques need a lot of computational resources. Thus, to train a machine
learning model, it is essential to use some tricks which can make the running time shorter.
In fact, to train a deep neural networks from scratch, it can last days or weeks. To face this
problem, several methods must be used.

(a) Colaboratory (b) Tensorflow

Figure I.13 – Tools

4.1 Graphics processing unit

The first thing to do in order to improve running time is to run the code on a Graphic pro-
cessing unit (GPU). A GPU is a processor specialized for display functions. It performs par-
allel operations and is useful for deep learning algorithms which perform a huge number of
operations. I worked with two GPU.

I first had access to Queen Mother building GPU. Thanks to my server account, I could
log on my account and use this GPU by SSH, tranfer files and run my codes. Moreover,
I used Colaboratory platform, figure I.13a, and the associated GPU for research projects.
Colaboratory is a Google project created to help disseminate machine learning education
and research.

4.2 TensorFlow library

I worked with an open-source machine learning framework, TensorFlow I.13b. Firstly, Ten-
sorFlow was developed by the Google Brain team for internal Google use. Later, it became
free to public. It can be run on multiple CPUs and GPUs and provides Python and C APIs.
This is one of the most popular machine learning framework because it provides many pow-
erful functionalities. TensorFlow allow users to build their own graphs (neural networks),
train their model from scratch or with an already trained model, visualize their model, fol-
low in real time the progress and, the most important thing, save some "checkpoint files"
which contains every weights learned while training. Then checkpoint files could be used
to retrain the model with other parameters and avoid to restart training from scratch.

To visualize our model and its progress, we can use the TensorFlow visualization tools called
TensorBoard. When I trained a classifier to determine if an image was a Yu-Gi-Oh card or
not (see Yu-Gi-Oh card recognition, p.10), it looks like fig. I.14 and fig. I.15.

Technician Internship

18

Figure I.14 – TensorBoard Graph

Figure I.15 – TensorBoard Loss

4.3 Additional machine learning methods

Using good tools, as mentionned above, is important to get the best result in reasonable time.
However, other methods exist to accelerate training process and prevent some problems.
Transfer learning and dropout can be point out.

Transfer learning

Given a model developped and trained for a task, transfer learning consists in reusing this
model as a start for a model on a second task. This method allows rapid progress and can
improve performance for a second more specific task. For instance, we can use transfer
learning to classify very similar images like breeds of dog. We can use a ResNet model
trained for ImageNET classification, change the last fully-connected layer and trained it on
our dogs images. In this case, transfer learning will allow to classify dogs without require a
large number of images for each breed.

Technician Internship

19

Dropout

Dropout is an important regularization technique for deep learning. Dropout consists in
deactivate some neurons in both hidden and visible layers of a neural network. Thus, it
avoids neurons to develop co-dependency during training. Applying dropout does not face
directly the waste of time but prevents against overfitting, one of the most regular deep
learning problem.

Technician Internship

20

Part II

Detecting and counting people on an
picture

1 2018 Baidu Star Developer Competition

The idea of my first project, Code 4 p.35, came from one of my colleague, George Chen.
He wanted to take part in a chinese computing contest. This competition was organized
by Baidu Inc, a Chinese multinational company specialized in Internet-related services and
artificial intelligence. The main purpose for participants was to develop a universal human
flow density estimation algorithm. That is to say participants were asked to provide an al-
gorithm or a model which predicts the total number of people in a given image. First, we
needed to train our model for a given dataset and then apply this model on testing data in
order to get the most accurate number of people for each testing data.

While George was attempting to build a model for this competition I decided to implement
a model using data to predict position of people on a picture. I thought that if we were able
to detect people in a picture, we should easily count how many they are.

1.1 Data Description

For this contest, the main problem was the data. Data consist of two parts, training data and
testing data. Both of them are divided into two more parts: one folder containing the whole
set of picture and one JSON file containing annotations for data. I will describe in details
training data which was the most important part for building an adequate model.

Technician Internship

21

First, we had 3619 images of public places like roads, cafeterias, elevators or airports as
showed in the following figure.

Figure II.1 – Example of training image

Finally, we had a JSON file which provide several annotations for training process. This file
consists of a 3619 units’ vector (one for each image).

Each unit is compouned as follow :

unit =

name
id
num

ignore_region
type

annotation

 =

”stage1/train/e6bc4d3e343ce1d6b01b947f7630c506.png”
1851
5[]

”dot”
{”y” : 298, ”x” : 138}
{”y” : 345, ”x” : 505}
{”y” : 451, ”x” : 145}
{”y” : 398, ”x” : 602}
{”y” : 203, ”x” : 412}
{”y” : 240, ”x” : 19}

where :

• name is the file name

• num is the number of people on this image

• ignore_ region is a coordinate list for a possible region to ignore

• type represent the type of annotation used to localize people ("dot" for a dot on his
head and "box" for a box over him)

• annotation, the dot or box list

It can be useful to precise that most of localization annotation are dots and not boxes, that is
why I decided to build a model using only dot localization.

Technician Internship

22

2 General model

2.1 Choice of the model and explanation

At this point I started many researches about how I could solve the problem of counting
people. The first idea I thought about was to build a person detection algorithm. It would
be easy, after detecting people, to count them. At this stage of my internship, I had had time
to learn that it exists algorithms which allow to make object detection in real-time, a very
interesting topic for me. That is why I chose to use object detection model to count people.
I first thought about using Faster-RCNN model which is one of the most powerful model
for object detection in real-time with a large accuracy (70-75 % accuracy and ∼ 20 FPS). This
algorithm is an improvement of Fast-RCNN which is itself an improvement of R-CNN (Re-
gion proposal Convolutional Neural Network). R-CNN family are classification problems
and include a region proposal network. It means that the model proposes some regions
(usually 2000 regions) where it is possible to find an object and then compute the classifi-
cation for each of the 2000 proposals. However, computing so much classification can take
a very long time. Moreover, the model is easy to understand but the regions’ proposal in
Faster-RCNN is more difficult to implement. For these reasons, I studied another approach,
called YOLO (You Only Look Once). YOLO is different because it treats the object recog-
nition task as a regression problem. The main advantage of YOLO is that it can achieves
more than 50 frames per second so it turns out to be useful for real time object detection.
However, YOLO is less accurate.

2.2 Architecture

The YOLO network is quite similar to CNN architecture. Indeed, it is compouned of a
convolutional feature extractor and two fully connected layers. Only the output is quite
different, because this is a 3D-tensor instead of 2D for CNN. In YOLO, the convolutional
part is adapted from Googlenet.

Figure II.2 – YOLO v2 architecture

Input of YOLO neural network is an image and the output consists in a 3D-tensor with
dimensions 7 × 7 × 24. Let’s get into more details. YOLO predicts 7 × 7 = 49 vectors
corresponding to 49 cells of input image, as showed fig. II.3 with 5× 5 = 25 cells.

Technician Internship

23

Figure II.3 – YOLO Prediction

sont les probabilités que le rectangle prédit de la cellule i soit de la classe j

Moreover, each predicted vector is 24th length⇒ vi = (xi, yi, wi, hi, li,1, li,2, ..., li,20) , where :

• (xi, yi, wi, hi) are predicted position, weight and height of object bounding box in cell i

• {li,j}j=1..19 are likelihoods that the predicted box, in cell i, is an object of class j (similar
to image classification problem)

• li,20 is the likelihood that the predicted box, in cell i, is a part of the background

I used YOLO v2 (fig. II.2) and modified a bit intial model in order to be in accordance with
my data and what I needed to do with it. To this end, I changed the last fully connected layer
to predict a 15th depth tensor instead of a 24th depth tensor. In fact, for each cell, I decided
to predict B = 5 relative coordinates (x, y) and give the livelihood that a person is present at
this point⇒ vi = (pi,1, xi,1, yi,1, pi,2, xi,2, yi,2, ..., pi,5, xi,5, yi,5)

Example : In fig. II.3, we intend our model predict : v20 = (1.0, 0.45, 0.2, 0, 0, 0, ..., 0)

2.3 Loss function

I have first trained the model with (II.1) as loss function and then with (II.2) which is more
similar than the original YOLO loss function.

L1 = λcoord

h×w∑
i=1

B∑
j=1

1
obj
i,j

[
(xi,j − x̂i,j)2 + (yi,j − ŷi,j)2

]
+ λobj

h×w∑
i=1

B∑
j=1

(pi,j − p̂i,j)2 (II.1)

L1 = λcoord

h×w∑
i=1

B∑
j=1

1
obj
i,j

[
(xi,j − x̂i,j)2 + (yi,j − ŷi,j)2

]
+ λobj

h×w∑
i=1

B∑
j=1

(pi,j − p̂i,j)2 (II.2)

where 1obji,j is 1 when there is at least j person in the cell i, else 0. λcoord and λobj are ratio
relating to importance of coordinates predictions and object livelihood prediction.

Technician Internship

24

3 Preprocessing data and visualisation

For this project, I used Google Colaboratory, which provides a powerful GPU. The first part
was to preprocess data. George’s code has helped me to this end. The goal was to alter data
from JSON file to a 4D-tensor of shape (n,w, h, p) = (3619, 10, 6, 15). In fact, for each of the
3619 image annotations, I had the following alteration to compute :

In order to verify that the data have been well preprocessed and in order to follow training
progress, I have implemented a displaying function (fig. II.4).

Figure II.4 – Procedure DISPLAY_ IMG(img, label, grid=True)

Then, I built my model and train it on the data. See Code 4. p.35.

4 Learning and results

4.1 Training

After some attempts, I chose to train the model with λcoord = 0.5 and λobj = 1.0 because for
baidu competition it was more important to have good person prediction than their position.
The training period didn’t take so much time (≈ 5h to process 15 epochs). However, I saw
that a problem was coming. In fact, the loss quickly fall down to 0. As a consequence,
application of the model on training data provided good results, whereas on testing data

Technician Internship

25

it was bad. The problem was due to overfitting. It means that the network have learned
a too specific function which works well with the training data but can’t supply a general
function to predict new samples. It is likely that overfitting is important here due to the fact
that training data are compouned by similar images. Data show only around fifteen places
where people often stand at the same position. Moreover, another reason of overfitting is
that the network is very deep whereas number of training images is not large. To face this
problem, several solutions can be applied.

4.2 Improvements

The first solution I tried was to create new data thanks to the original data. We call this tech-
nique data augmentation. Therefore, I extended the number of data from 3 619 to 72 360 by
flipping, reflecting and cropping each of them. Moreover, I added dropout to avoid overfit-
ting. Then, I retrained the model on 72 360 pictures. I trained the first epoch with lr = 10−3

to go down quicker and then with lr = 10−5 to adjust. It took more time (≈ 1 epoch /hour).
Unfortunetly results weren’t good yet for the problem of localization. However, compared
to expected results, density of population was not bad. Convinced that there are other ways
to improve training, I was looking for a new method. I thought that the best method was to
train or use a pretrained model on image classification (like ImageNET dataset) to learn use-
ful features. Then, I should move last fully-connected layer to do object-detection prediction
instead of classification. In other words, I decided to use transfer learning as explained p.18.

To this end, I used a pretrained VGG model on ImageNET dataset and changed the last
fully-connected layer to detect and count people.

This project was interesting for me because I discovered object detection algorithms and
learnt how YOLO, a very encouraging model, works.

Technician Internship

26

Part III

Realistic image generation of cars from
drawings

1 Project Description

For this last project, Code 5 p.35, I tried to apply a kind of conditional GAN, sometimes
called pix2pix. A very interesting website gives an interactive interface of pix2pix examples
[11]. I found this idea when my supervisor M.Jianguo Zhang asked me to study the Image-
to-Image Translation with Conditional Adversarial Networks paper [2] and to find a project about
it. In this paper they introduce some ways to use cGAN for altering an image to another one.
Applications are multiples, this process can be used to image colorization or realistic image
reconstruction from shapes for instance. One particular application caught my interest. It
consists of a network able to generate realistic images from drawings. It is used to design
new clothes or to create new images thanks to an original drawing.

For this project, I chose to train a model to generate realistic colored cars (output) thanks to
car edges and a color (input = label = condition).

Figure III.1 – Project purpose

Technician Internship

27

1.1 Data Description and preprocessing

As every machine learning project, the first part was to find an adequate dataset and prepro-
cess data. In this case, I had to find a large range of car images. So I runned code of Hardik
Vasa [13] in order to download more than 3 500 car images from Google image. Then I had
an important work to preprocess them. Indeed, I knew since DCGAN project p.16 that it is
more accurate to use similar images than very different ones. In fact, convolutional layers
detect features in images. Then, when every images have different features the network can-
not extract similarities. For this reason, I decided to keep only images without background
because there were too much backgrounds and the goal was to generate car image and not
background. So, I first deleted all images with a background. Besides, I removed every
images that were not "jpg" and "png" files. As a result, there were only 1 050 images. With
these 1 050 images, it was then possible to work.

After that, I had to find a way to generate labels, that is to say the edge images and the car
color. To generate labels, I tried 3 edge detection methods.

Figure III.2 – Edge Detection algorithms

I finally decided to use OpenCV method because this method provides images with less
edges and so that, quite similar to basics drawings.

To finish the preprocessing part, I had to detect car color. It was not an easy task because
cars have different orientations, have headlights, wheels and a windscreen of another color.
Moreover, there are lights and shadows on the car, so it is not obvious to find a similar area
for every 1050 images where the car color is mainly present. The empirical method that I
chose is to use the average color of a small square (5× 5 or 8× 8 pixels) in the middle of the
image.

Technician Internship

28

2 Model

According to Manish Chablani website [12], pix2pix is a conditional GAN which learns a
mapping from an input image to an output image. I used this model for my project. As every
GAN model, pix2pix is compouned of two neural networks, a generator and a discriminator.
Let’s talk about both architectures.

2.1 Generator

The structure of the generator is an encoder-decoder. It looks like a variational autoencoder
(VAE) structure. The generator is divided into two units. The encoder unit takes an input
image and try to reduce it into a smaller vector with some convolutional layers. This vector
can be seen as a compressed data of the input. In the decoder unit, the input is the output
vector of the encoder and the output is a new image. Decoder uses "deconvolutional" layers
to get higher dimensions.

In the paper Image-to-Image Translation with Conditional Adversarial Networks [2], authors used
another architecture, called U-Net, in order to improve the performance of the image-to-
image transformation. U-Net has skip connections, which connects the correspond layers
from the encoder to decoder (see fig. III.3).

Figure III.3 – Generator Structure

2.2 Discriminator

Concerning discriminator, its structure looks a lot like the encoder unit of the geneator. Its
goal is to predict if a image is due to the generator or is a real image from the dataset. The
main difference with encoder unit is that the output is a 30×30 matrix of likelihoods in [0, 1].
Each value represents how believable is the corresponding section of the input image.

Figure III.4 – Generator Structure

Technician Internship

29

2.3 Loss functions

As every GAN model, to train this model, we have to train alternatively discriminator and
generator. I used AdamOptimizer to minimise each generator and discriminator losses. Let x
be the colored edge data and y the real data.

Discriminator loss:

LD = −
k×k∑
i=1

log
[
D

(i)
θd
(y)
]
+ log

[
1−D(i)

θd
(Gθg(x))

]
Generator loss:

LG = − λFD
k × k

k×k∑
i=1

logD
(i)
θd
(Gθg(x)) +

λL1
n× n× 3

n×n×3∑
i=1

|yi −G(i)
θg
(x))|

where k = 30 is the dimension of discriminator output and n = 256 is the dimension of
generator output.

λFD and λL1 are ratio relating to the importance of fooling the discriminator and looking like
real data.

3 Learning and results

3.1 Training

I trained the model with λFD = 1 and λL1 = 100 as advised in the original paper [2]. Making
λL1 high allows a quick convergence to the realistic images. So it saves time (only 10 epochs
needed to be train≈ 2h). As shown in fig. III.5, before the first epoch, generated cars already
have the shape of real cars. However, it needs more epochs in order to have a good accuracy
and to color cars well.

Figure III.5 – Training progress

Technician Internship

30

3.2 Testing

I tested the network on different data. Results are quite good and interesting to analyse. We
can notice that the network have learned several ideas. I would like to put forward ideas of
coloration, shadow and light.

I used the network to change original color of the purple 4×4 displayed above.

Figure III.6 – 4x4 in different colors

I also used it to color some drawing from Google Image, some drawings of my friends and
mines, p.37 .

Figure III.7 – Image to image translation procedure

Technician Internship

31

3.3 Improvements

I quickly understood that there was a limit to the trained model. As shown on fig. III.8, the
network seems to be more able to generate black, gray, red and blue cars than other colors.
Moreover when I tryied to generate a car with two or more colors, it provides bad results.

Figure III.8 – Wrong coloration

One way to solve coloration problem is to train the model with more colored images like
yellow, pink or green cars for instance. Although these kind of images are more difficult to
find, I downloaded new car images of seven different colors. I got only sixty for each color.
I retrained the model on all images, including new ones. Results were quite better for the
coloration task because it was able to provide a larger range of car’s color. For example, I
obtained different shades of red or shades of yellow.

Figure III.9 – Output difference

For this project, results are interesting and quite good. In the future, we could add cars data
and train the model longer to get best results.

Technician Internship

32

Conclusion

This internship allowed me to discover different things.

First of all, living in a flatmate with foreigners in an English-speaking country allows me
to discover different cultures. All of these cultures are different from the French one. As an
example I can mention the Chinese, Hungarian and Thai cultures. I also discovered different
type of culinary specialties. I will not hesitate to cook some of them again.

As I already mentioned, the discovery of an attractive domain was for me a significant asset.
In fact, deep learning is at the heart of current researches in artificial intelligence. On the
other hand, this internship allowed me to acquire the necessary knowledge in order to have
an efficient practice of machine learning methods. This topic has a particular interest to me.
I already have some ideas of projects that I would like to carry out in the future using the
skills I earned.

Finally, and probably the most important, I discovered the work of a searcher at once with
the work of my PhD student colleagues, my supervisor and mine. In addition, I discovered
the world of research in an international context owing to the multiple nationalities of people
working in premises of Queen Mother Building. This first experience allows me to confirm
my interest for this job.

Technician Internship

33

Internship Progress

- Meet up with my supervisor M.Jianguo ZHANG and his colleagues
Week 1 - Lecture about cybersecurity and how to choose a good password

- Learning of techniques for classification problems
- Learning of Python language
- Learning of ML techniques for image classification (Stanford Univ.)

Week 2 - Learning of TensorFlow library
- Small project about comparison between a CNN and a Fully Connected network
- Learning of ML (Stanford Univ.)

Week 3 - Learning of TensorFlow library
- Small project DCGAN
- Specific study of generative models (VAE and GAN)

Week 4 - Reading of papers about GAN derivatives and applications.
- Looking for a project
- Study of pix2pix applications. It is fun !! [11]

Week 5 - First idea of a project and research about it (gave up)
- Introduction to Baidu contest by George

Week 6 - Implementation of a deep learning API
- Study of object detection algorithm (Faster R-CNN and YOLO)
- Implementation of a deep learning API

Week 7 - Small project for Yu-Gi-Oh card recognition
- Building a model for Baidu Contest using YOLO

Week 8 - Study of George’s code and implementation of my model for counting people
problem

Week 9 - Implementation of the second project
Week 10 - Work on Baidu project to avoid overfitting
Week 11 - Work on edge2car project
Week 12 - Writing of the report and improvement of the project models

Technician Internship

https://affinelayer.com/pixsrv/

34

Bibliography

[1] NIPS 2016 Tutorial: Generative Adversarial Networks, Ian Goodfellow, https://arxiv.
org/abs/1701.00160, 2016.

[2] Image-to-Image Translation with Conditional Adversarial Networks, Phillip Isola, Jun-Yan
Zhu, Tinghui Zhou and Alexei A. Efros, https://arxiv.org/abs/1611.07004,
2016.

[3] You Only Look Once, Joseph Redmon , Santosh Divvala , Ross Girshick and Ali Farhadi,
https://arxiv.org/abs/1506.02640, 2016.

[4] Stanford University CS231n, Spring 2017, Fei-Fei Li, Justin Johnson and Serena Yeung,
http://cs231n.stanford.edu/, 2017

[5] Object Recognition for Dummies, Lilian Weng, https://lilianweng.github.io/
lil-log/2017/12/31/object-recognition-for-dummies-part-3.html,
2017.

[6] TensorFlow tutorial, TensorFlow team, https://www.tensorflow.org/get_
started/ 2015.

[7] DCGAN-tensorflow, Taehoon Kim (carpedm20), https://github.com/carpedm20/
DCGAN-tensorflow, 2016.

[8] pix2pix-tensorflow, Yen (yenchenlin and MIT), https://github.com/yenchenlin/
pix2pix-tensorflow, 2017.

[9] Wikipedia, Wikipedia Team, https://fr.wikipedia.org/

[10] Yu-Gi-Oh card dataset, ultrajeux.com, http://www.finalyugi.com/
yugioh-cartes.html

[11] Image-to-Image Demo - Affine Layer, Christopher Hesse, https://affinelayer.com/
pixsrv/, 2017

[12] CycleGANS and Pix2Pix, Manish Chablani, https://towardsdatascience.com/
cyclegans-and-pix2pix-5e6a5f0159c4, 2017

[13] Google Images Download, Hardik Vasa (MIT), https://github.com/hardikvasa/
google-images-download, 2015

Technician Internship

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1506.02640
http://cs231n.stanford.edu/
https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
https://www.tensorflow.org/get_started/
https://www.tensorflow.org/get_started/
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/yenchenlin/pix2pix-tensorflow
https://github.com/yenchenlin/pix2pix-tensorflow
https://fr.wikipedia.org/
http://www.finalyugi.com/yugioh-cartes.html
http://www.finalyugi.com/yugioh-cartes.html
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://towardsdatascience.com/cyclegans-and-pix2pix-5e6a5f0159c4
https://towardsdatascience.com/cyclegans-and-pix2pix-5e6a5f0159c4
https://github.com/hardikvasa/google-images-download
https://github.com/hardikvasa/google-images-download

35

Codes

• Code 1 - Dense NN vs CNN - Colab
→ https://arxiv.org/abs/1701.00160

• Code 2 - Deep Learning API - Github
→ https://github.com/davHub/DeepLearningAPI

• Code 3 - Yu-Gi-Oh card recognition - Github
→ https://github.com/davHub/DeepLearningAPI

• Code 4 - Counting People - Colab
→ https://drive.google.com/open?id=1hlmlDtVtL89Xp0fLIVd3SNkytIF9Am1P

• Code 5 - Car Generator - Colab
→ https://drive.google.com/open?id=1vOLj9Mx7SRtyeZAbfayE8jiw6mE4S-D-

Technician Internship

https://arxiv.org/abs/1701.00160
https://github.com/davHub/DeepLearningAPI
https://github.com/davHub/DeepLearningAPI
https://drive.google.com/open?id=1hlmlDtVtL89Xp0fLIVd3SNkytIF9Am1P
https://drive.google.com/open?id=1vOLj9Mx7SRtyeZAbfayE8jiw6mE4S-D-

36

Extensions

Yu-Gi-Oh Generation

Figure III.10 – Extension Yu-Gi-Oh 1

Figure III.11 – Extension Yu-Gi-Oh 2

Technician Internship

37

Car Generation

Figure III.12 – Extension Car 1

Figure III.13 – Extension Car 2

Figure III.14 – Extension Car 3

Technician Internship

38

Figure III.15 – Baidu Invitation for the final competition

Technician Internship

	Acknowledgments & Presentation
	Acquisition of knowlege and putting into practice
	Machine Learning Overview
	Image classification
	Convolutional Neural Networks
	Small project : Yu-Gi-Oh card recognition

	Generative Adversarial Network
	Generative Models
	GAN
	Derivatives and applications
	Small project : Understand and apply DCGAN network

	Tools for machine learning
	Graphics processing unit
	TensorFlow library
	Additional machine learning methods

	Detecting and counting people on an picture
	2018 Baidu Star Developer Competition
	Data Description

	General model
	Choice of the model and explanation
	Architecture
	Loss function

	Preprocessing data and visualisation
	Learning and results
	Training
	Improvements

	Realistic image generation of cars from drawings
	Project Description
	Data Description and preprocessing

	Model
	Generator
	Discriminator
	Loss functions

	Learning and results
	Training
	Testing
	Improvements

	Conclusion
	Internship Progress
	References, Codes & Extensions

